

Problem 90

The following figure shows a triangle formed by the three vectors $\overrightarrow{\mathbf{A}}$, $\overrightarrow{\mathbf{B}}$, and $\overrightarrow{\mathbf{C}}$. If vector $\overrightarrow{\mathbf{C}}'$ is drawn between the midpoints of vectors $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$, show that $\overrightarrow{\mathbf{C}}' = \overrightarrow{\mathbf{C}}/2$.

Solution

Consider the corresponding vector magnitudes. Let θ be the angle between $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$.

Apply the law of cosines to the small triangle and to the big triangle.

$$C'^{2} = \left(\frac{A}{2}\right)^{2} + \left(\frac{B}{2}\right)^{2} - 2\left(\frac{A}{2}\right)\left(\frac{B}{2}\right)\cos\theta$$
$$C^{2} = A^{2} + B^{2} - 2AB\cos\theta$$

Solve the second equation for $\cos \theta$.

$$\cos\theta = \frac{A^2 + B^2 - C^2}{2AB}$$

Plug it into the first equation.

$$C'^{2} = \left(\frac{A}{2}\right)^{2} + \left(\frac{B}{2}\right)^{2} - 2\left(\frac{A}{2}\right)\left(\frac{B}{2}\right)\left(\frac{A^{2} + B^{2} - C^{2}}{2AB}\right)$$
$$= \frac{A^{2}}{4} + \frac{B^{2}}{4} - \frac{A^{2} + B^{2} - C^{2}}{4}$$
$$= \frac{C^{2}}{4}$$

Take the square root of both sides.

$$C' = \frac{C}{2}$$

 $\overrightarrow{\mathbf{C}}'$ and $\overrightarrow{\mathbf{C}}$ have the same direction. Therefore, $\overrightarrow{\mathbf{C}}' = \overrightarrow{\mathbf{C}}/2$.

www.stemjock.com